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Abstract
This paper studies photoinduced surface deformation of nematic elastomers containing
azobenzene molecules. In the framework of a phenomenological model, a unified approach
based on the Green function technique is proposed to predict the resulting surface topographies.
The orientation of the nematic axis and the pattern of illumination can be arbitrary, and the
calculation of the surface profile is finally reduced to the estimation of certain volume integrals.
To demonstrate the application and to show the efficiency of the approach, two numerical
examples are given. We expect that the present work can provide useful informative traces for
creating desired surface topographies.

1. Introduction

Nematic elastomers possessing uniaxial orientational order can
be synthesized by incorporating rod-like mesogenic groups
into the strands of cross-linked polymer networks. The
variation in the degree of alignment of mesogenic rods can
deform the whole network [1]. When heated above the
nematic–isotropic transition temperature, a shape change as
high as 500% of such an elastomer can be observed [2].
Effectively, similar spontaneous deformation of nematic
elastomers can also be achieved optically if the mesogenic
groups are replaced by rod-like azobenzene derivatives [3–5].
Upon absorbing photons at suitable wavelengths, the
azobenzene molecules suffer photoisomerization and change
from the rod-like trans-state to the strongly kinked cis-
state. This disrupts the nematic order of the elastomer
and results in a contraction along the nematic axis. The
photoinduced deformation is large and reversible, and the
timescales vary from less than 100 ms [6, 7] to 1–10 s [8]. With
these properties, the nematic elastomers become attractive for
engineering micro-optical mechanical systems [9–12].

The fascinating photomechanical behavior of the nematic
elastomers has been studied extensively. Besides the
polarization-dependent photoresponse [13, 14], of special

1 Author to whom any correspondence should be addressed.

interest are inhomogeneous deformations because they are
closely relevant to the application of nematic elastomers as
photoactuators. Even if the nematic elastomer is irradiated
uniformly with unilateral intensity, the light penetrating the
face will be attenuated exponentially. It is this inhomogeneity
of light intensity that generates a gradient of photostrain and
thus bends a thin nematic elastomer beam or film [15–17].
More complex is the situation when the nematic elastomer is
non-uniformly illuminated, e.g. the incident light is localized
as a spot. A photostrain is induced in the irradiated part but not
anywhere else, leading to the formation of pits and bumps on
the elastomer surface. Warner and Mahadevan [15] proposed
a scaling analysis of pits and bumps induced by shining
light in circular spots, and suggested its use as a writable
structure in microfluidics, switchable reflector elements in
projective displays, etc. The idea is quite analogous to that of
inscribing surface relief gratings onto amorphous azobenzene
polymers [18, 19]. Nonetheless, the microscopic scenario in
the nematic elastomers is different in that an occasional cross-
link between chains resists large-scale mass transport, and thus
elastic distortion becomes a predominant concern. Recently,
Wei and He [20] utilized the Hankel transformation to perform
a detailed calculation of the surface deformation in response
to an illumination in circular spots, where the nematic axis
of the nematic elastomer is normal to the surface. By using
Fourier transformation, He [21] also obtained an analytical
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solution to the surface deformation of a nematic elastomer
with an arbitrary orientation of the nematic axis under striped
illumination. These studies show strong dependence of the
photoinduced surface topography not only on the pattern of
illumination and the orientation of the nematic axis, but also
on the absolute size of the illuminated region. Therefore, to
create a desired surface topography on a nematic elastomer, the
correlations between these factors should be well understood.

The present work aims at the development of an efficient
way to predict the photoinduced surface topographies of
nematic elastomers. Since in a general case of illumination
the surface deformation may be very complicated, the methods
adopted in the previous studies [20, 21] are inadequate
in calculating the resulting surface profile. In this paper,
inspired by the concept of eigenstrain in the theory of elastic
inclusion [22], we propose a unified approach based on the
Green function technique. The new method applies in principle
to an arbitrary geometry of illumination pattern and to an
arbitrary orientation of the nematic axis. In any case the
calculation of surface topography finally can be reduced to
the numerical estimation of certain volume integrals. To
illustrate the application, numerical results for two examples
are demonstrated. It is expected that the present method may
be used as a helpful tool that could provide an informative trace
for the creation of desired surface topographies on nematic
elastomers by irradiation.

2. Theoretical formulation

Sketched in figure 1 is a monodomain nematic elastomer
irradiated by a normally incident beam, with an illumination
pattern � formed on the surface. Since the penetrating depth of
photons is tiny, we approximate the elastomer as a half-space,
x3 < 0, with the undeformed surface coinciding with the x1–x2

plane of the rectangular coordinate system. The orientation of
the nematic axis of the nematic elastomer can be arbitrary and
is characterized by two angles φ and θ , where φ is the angle
between the nematic axis and the x3 axis, and θ stands for the
angle between the surface projection of the nematic axis and
the x1 axis. Denote the light intensity on the surface x3 = 0
by Iδ(x1, x2), where I is a constant having the dimension
of light intensity and δ(x1, x2) is a dimensionless function
characterizing the intensity distribution. Then, according to
Beer’s law, the intensity at a point (x1, x2, x3) in the elastomer
decays exponentially with distance from the surface and can be
written as

I (x1, x2, x3) = Iδ(x1, x2) ex3/d , (1)

with d being the characteristic attenuation length. In the low-
illumination limit, the photostrain induced by the trans–cis
isomerization is proportional to the local intensity [15, 21].
By assuming elastic incompressibility of the elastomer, the
photostrain components along and normal to the nematic axis,
ε∗
‖ and ε∗

⊥, are

ε∗
‖ = −α Iδ(x1, x2) ex3/d , ε∗

⊥ = 1
2α Iδ(x1, x2) ex3/d ,

(2)

Figure 1. A nematic elastomer is illuminated by a light beam
normally incident to the surface. The orientation of the nematic axis
of the elastomer is arbitrary and characterized by two angles φ and θ .

with α being a phenomenological constant. Making use
of coordinate transformation, the photostrain components
referring to the (x1, x2, x3) system, ε∗

i j , are obtained as

ε∗
i j = λi jα Iδ(x1, x2) ex3/d , (3)

in which λi j are functions of θ and φ given by [21]

λ11 = 1
2 (1 − 3 cos2 θ sin2 φ),

λ22 = 1
2 (1 − 3 sin2 θ sin2 φ),

λ33 = 1
2 (1 − 3 cos2 φ),

λ12 = λ21 = − 3
2 sin θ cos θ sin2 φ,

λ13 = λ31 = − 3
2 cos θ sin φ cos φ,

λ23 = λ32 = − 3
2 sin θ sin φ cos φ.

(4)

Here and in the following, Latin indices range from 1 to 3,
and repeated ones mean summation.

The photostrain components in (3) are position-dependent
and incompatible. As a result, a spatially varying elastic
strain must be produced which, being superposed to the
photostrain, ensures the total strain is compatible. This is very
analogous to the situation of the first-order transformation in
solids for which the related problem of elastic deformation
can be well treated via the concept of eigenstrain [22]. We
will determine the total surface deformation of the nematic
elastomer in the same way. For simplicity, we assume that the
deformation is small and the elastomer is elastically isotropic
and incompressible. Although approximate, these assumptions
have been utilized in the previous studies [15, 17, 20, 21]
to extract the main features of the problem while keeping
the analysis as simple as possible. To start, we denote the
displacement, strain and the stress in the elastomer by ui ,
εi j and σi j , respectively. The incompressibility condition is
expressed by ∂uk/∂xk = 0, the strain–displacement relation is
εi j = (∂ui/∂x j + ∂u j/∂xi)/2 and the stress–strain relation is
given by

σi j = −pδi j + 2μ
(
εi j − ε∗

i j

)
, (5)

where p is the average hydrostatical pressure, δi j refers to
the Kronecker delta and μ denotes the shear modulus. In
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the absence of body force, the stress satisfies the equilibrium
equation ∂σi j/∂x j = 0. Thus, by supplying the associated
boundary conditions σi3 = 0 on the surface x3 = 0, the
deformation of the elastomer under a special illumination
pattern can be determined in principle by solving the
corresponding boundary value problem.

The present paper pursuits a unified approach for
analyzing the photoinduced surface topography by using the
technique of the Green function. In fact, the stress in (5) can
be separated into two parts: one is σ ′

i j = −pδi j + 2μεi j ,
which corresponds to the stress in the situation that there is
no photostrain, and the other is −2με∗

i j . Then the equilibrium
equation becomes ∂σ ′

i j/∂x j − 2μ∂ε∗
i j/∂x j = 0 and we can

see that the role of the term −2μ∂ε∗
i j/∂x j is equivalent to the

action of a body force. In this case, by making use of the
Green function tensor Gi j(x1 − x ′

1, x2 − x ′
2,−x ′

3), the surface
displacement of the elastomer can be expressed formally by

ui(x1, x2, 0)

= − 2μ

∫ 0

−∞

∫ ∞

−∞

∫ ∞

−∞
Gi j(x1 − x ′

1, x2 − x ′
2,−x ′

3)

× ∂ε∗
jk

∂x ′
k

dx ′
1 dx ′

2 dx ′
3. (6)

Here the Green function tensor Gi j(x1 − x ′
1, x2 − x ′

2,−x ′
3)

defines the fundamental solution to the xi component of the
surface displacement at the point (x1, x2, 0) induced by a
concentrated unit force applied at the point (x ′

1, x ′
2, x ′

3) within
the elastomer along the x j direction. Since the Green function
for an elastically compressible half-space is available (see,
e.g., [22]), the components of the Green function tensor related
to our problem of an incompressible half-space are derivable
by simply setting the Poisson’s ratio as 1/2. The results are

G31(x1 − x ′
1, x2 − x ′

2,−x ′
3) = − (x1 − x ′

1)x ′
3

4πμR3
,

G32(x1 − x ′
1, x2 − x ′

2,−x ′
3) = − (x2 − x ′

2)x ′
3

4πμR3
,

G33(x1 − x ′
1, x2 − x ′

2,−x ′
3) = R2 + x ′2

3

4πμR3
,

(7)

with R being the distance between a point (x1, x2, 0) on the
surface and a point (x ′

1, x ′
2, x ′

3) in the interior of the nematic
elastomer, defined by

R =
√

(x1 − x ′
1)

2 + (x2 − x ′
2)

2 + x ′2
3 . (8)

The surface profile of the deformed elastomer is described
by the position vector r = [xi + ui(x1, x2, 0)]ei , where ei

stands for the base vector of xi . In view of the smallness
of the deformation in the low-illumination limit, we can
approximate the position vector by r = x1e1 + x2e2 +
u3(x1, x2, 0)e3, namely, only the normal component of the
surface displacement contributes to the profile. Integrating (6)
by parts and using (7), we arrive at

u3(x1, x2, 0) = 2μ

∫ 0

−∞

∫ ∞

−∞

∫ ∞

−∞
ε∗

jk

∂

∂x ′
k

× G3 j(x1 − x ′
1, x2 − x ′

2,−x ′
3) dx ′

1 dx ′
2 dx ′

3. (9)

Accordingly, the normal component of the surface
displacement can be calculated. As the light has been assumed
to be normally incident to the elastomer surface, the integral
domain is effectively a cylinder with the cross section exactly
identical to the illumination pattern on the surface. Obviously,
the photoinduced topography of the surface depends not only
on the geometry of the illumination pattern but also on the
orientation of the nematic axis. For convenience of use, we
give the derivatives of the Green function components with
respect to x ′

k as follows:

∂G31

∂x ′
1

= [R2 − 3(x1 − x ′
1)

2]x ′
3

4πμR5
,

∂G31

∂x ′
2

= ∂G32

∂x ′
1

= −3(x1 − x ′
1)(x2 − x ′

2)x ′
3

4πμR5
,

∂G31

∂x ′
3

= − (x1 − x ′
1)(R2 − 3x ′2

3 )

4πμR5
,

∂G32

∂x ′
2

= [R2 − 3(x2 − x ′
2)

2]x ′
3

4πμR5
,

∂G32

∂x ′
3

= − (x2 − x ′
2)(R2 − 3x ′2

3 )

4πμR5
,

∂G33

∂x ′
1

= (x1 − x ′
1)(R2 + 3x ′2

3 )

4πμR5
,

∂G33

∂x ′
2

= (x2 − x ′
2)(R2 + 3x ′2

3 )

4πμR5
,

∂G33

∂x ′
3

= x ′
3(R2 − 3x ′2

3 )

4πμR5
.

(10)

3. Illustrative examples

To illustrate the application of this work, we will consider
two typical examples. The first example is the photoinduced
surface topography of a nematic elastomer under striped
illumination. The problem has an analytical solution and the
related phenomena have also been discussed in detail [21].
We will compare our numerical results based on equation (9)
with the corresponding predictions of the analytical solution
so as to validate the present approach. The second example
deals with the calculation of the surface topography of an
elastomer under illumination in an annular pattern. A special
case when the nematic axis is normal to the elastomer surface
has been studied previously [20]. However, our attention here
is focused on a much more complicated situation, that the
nematic axis can be arbitrarily oriented. The objective is to
show the efficiency of the proposed method utilizing the Green
function technique. In all the examples the coordinates and the
normal component of surface displacement are normalized as

Xi = xi

d
, yi = x ′

i

d
,

U3(X1, X2) = 4π

α Id
u3(x1, x2, 0).

(11)
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3.1. The case of striped illumination

Suppose that the elastomer is irradiated so that the illumination
pattern is a stripe, with the half-width a, parallel to the x2 axis
(figure 2). This is equivalent to setting the function δ(x1, x2)

in (1) as δ(x1, x2) = H (a − |x1|), where H (x) stands for
the step function. In this case the integration domain of (9)
is characterized by −a � x ′

1 � a, −∞ < x ′
2 < ∞ and

−∞ < x ′
3 � 0. Making use of (10), we have

∫ ∞

−∞
∂G31

∂x ′
1

(x1 − x ′
1, x2 − x ′

2,−x ′
3) dx ′

2

= −
[
(x1 − x ′

1)
2 − x ′2

3

]
x ′

3

2πμ
[
(x1 − x ′

1)
2 + x ′2

3

]2 ,

∫ ∞

−∞
∂G31

∂x ′
3

(x1 − x ′
1, x2 − x ′

2,−x ′
3) dx ′

2

= − (x1 − x ′
1)

[
(x1 − x ′

1)
2 − x ′2

3

]

2πμ
[
(x1 − x ′

1)
2 + x ′2

3

]2 ,

∫ ∞

−∞
∂G33

∂x ′
1

(x1 − x ′
1, x2 − x ′

2,−x ′
3) dx ′

2

= (x1 − x ′
1)

[
(x1 − x ′

1)
2 + 3x ′2

3

]

2πμ
[
(x1 − x ′

1)
2 + x ′2

3

]2 ,

∫ ∞

−∞
∂G33

∂x ′
3

(x1 − x ′
1, x2 − x ′

2,−x ′
3) dx ′

2

= x ′
3

[
(x1 − x ′

1)
2 − x ′2

3

]

2πμ
[
(x1 − x ′

1)
2 + x ′2

3

]2
.

(12)

Therefore, by invoking (3) and (10)–(12), it is inferred
from (9) that the dimensionless component of surface
displacement is reduced to

U3(X1, X2) = 4
∫ 0

−∞

∫ s

−s

[
(λ33 − λ11)(ρ

2 − 2y2
3)

+ 4λ13(X1 − y1)y3
]
y3ρ

−4 ey3 dy1 dy3, (13)

where ρ =
√

(X1 − y1)2 + y2
3 and s = a/d is the normalized

half-width of the stripe. Clearly, the result is independent of
the coordinate in the direction parallel to the stripe.

The normalized surface displacement in (13) can be
calculated numerically. In the computation, the Simpson
integral form is used for y1 with the step length 0.02, while
the rectangular integral form is adopted for y3 with the step
length 0.02. Figures 3(a) and (b) show the surface topographies
in the cases of (φ, θ) = (π/2, 0) and (φ, θ) = (π/4, 0),
respectively, where the normalized stripe widths are both taken
as s = 5. The results are fully consistent with those given
by the recent analytical solution [21]. In fact, we have also
examined dimensionless surface displacements for different
stripe widths and nematic axis orientations, and found that the
results are almost the same as the predictions of the analytical
solution. Thus, without further discussion, we conclude that
the present approach based on the Green function technique
can recover the results of the analytical solution.

Figure 2. Sketch of the nematic elastomer under striped illumination.
The illumination pattern on the surface is a stripe parallel to the x2

axis, with the half-width a.

3.2. The case of annular illumination

As the second example, we consider the situation that the
elastomer is illuminated in an annular pattern with the inner
radius r1 and outer radius r2 (figure 4). Since the illumination
pattern is axisymmetric, we can assume, without loss of any
generality, that the nematic axis of the elastomer is in the plane
perpendicular to the x2 axis, i.e. θ = 0. In addition, for brevity
of the discussion, only three typical values of the angle φ are
taken into account: φ = 0, π/4 and π/2. To obtain the normal
component of surface displacement from (9), it is convenient to
introduce the transformation of x ′

1/d = r cos ϕ, x ′
2/d = r sin ϕ

and x ′
3/d = z. In this case the integration domain becomes

r1/d � r � r2/d , 0 � ϕ � 2π and −∞ < z � 0, and the
normalized form of the surface displacement is

U3(X1, X2) = 3
∫ 0

−∞

∫ 2π

0

∫ r2/d

r1/d

r z f (r, ϕ, z)

R̂5
ez dr dϕ dz,

(14)

where R̂ =
√

(X1 − r cos ϕ)2 + (X2 − r sin ϕ)2 + X ′2
3 and

the function f (r, ϕ, z) is defined by

f (r, ϕ, z)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3z2 − R̂2, for φ = 0,
1
2 [R̂2 − 3(X2 − r sin ϕ)2]
− 3(X1 − r cos ϕ)z, for φ = π/4,

R̂2 − 3(X1 − r cos ϕ)2, for φ = π/2.

(15)

In the numerical computation, both the precision and
computational efficiency are important. We have tested
different step lengths and found that the truncation error is
more sensitive to the step length of r than that of ϕ and z. Thus,
we adopt the Simpson integral form for r , and the rectangular
integral form for ϕ and z. When the step lengths of r , ϕ and
z are chosen as 0.02, 0.01 and 0.08, respectively, the maximal
truncation error is less than 1% in comparison with the results
for shorter step lengths. In light of the convergence of the
integrals, it is believed that the step lengths of 0.2, 01 and
0.8 for r , ϕ and z, respectively, are short enough to ensure the
precision of the integrals. The lower limit of z is taken as −20
for the above reason.

We first examine the case of φ = 0, i.e. the nematic axis
is normal to the elastomer surface. The ratio s = r1/r2 is
introduced to describe the relative size of the inner radius in

4
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Figure 3. Schematic illustration of the surface topographies under striped illumination: (a) for the nematic orientation of φ = π/2 and θ = 0,
the profile of the cross section is ‘M’-shaped; (b) for the nematic orientation of φ = π/4 and θ = 0, the profile of the cross section is
‘N’-shaped. In both cases the normalized half-width of the stripe is taken as r = 5 and the scales in the three directions are normalized by
X1 = x1/d , X2 = x2/d and X3 = 4πu3/α Id .

Figure 4. Sketch of the nematic elastomer under annular
illumination. The illumination pattern is an annulus with the inner
and outer radii r1 and r2, respectively.

comparison with the outer. Clearly, s = 0.0 means that the
annular pattern is reduced to a circular spot. Figure 5 illustrates
the surface topographies for fixed outer radius of r2 = d but
varying inner radius. All the topographies are axisymmetric.
As seen from figure 5(a), if s = 0.0, the illuminated area caves
in, forming a single pit with the lowest point at the center. This
is consistent with the previous prediction by using the Hankel
transformation [20]. If s = 0.2, the topography is an annular
pit with a small protuberant cone at the center (figure 5(b)).
The formation of the small cone is due to that the material
there is unexposed. Analogous surface topography can be
observed if s = 0.5, except the cone appearing in the bottom
of the pit becomes larger (figure 5(c)). Figure 6 illustrates the
photoinduced surface topographies when the outer radius of
the illuminated pattern is fixed as r2 = 5d , where figure 6(a)
is shown upside-down for a clearer visualization. For s =
0.0, 0.2 and 0.5, the topographies, given respectively in
figures 6(a)–(c), are globally similar to the corresponding ones
in figure 5. The differences are small and appear only in some
local regions. For example, different from that in figure 5(a),
the bottom of the pit in figure 6(a) mounds slightly and the
boundary of the illuminated region reaches the maximal height.
The phenomenon has been attributed to the elastic confinement
from the unexposed surrounding material [20].

Next, when φ = π/4, the nematic axis is neither normal
nor parallel to the elastomer surface. Figures 7 and 8 depict
the surface topographies for r2 = d and 5d , respectively.
Since a much sharper shape transition occurs near the boundary
region of the illumination pattern, the density of data points
has been enhanced in some locations (the darker regions) in
figure 8. At the same radius ratio s, the surface profiles in
both figures possess similar features. For example, at s = 0.0,
the illuminated elastomer protrudes out in the region x1 < 0
while it caves in at the position of x1 > 0, and thus there is a
sharp transition between these two regions. Again, at s = 0.2,
a small protuberant cone of the unexposed elastomer appears
at the center of the illuminated area. This is also the case at
s = 0.5.

Finally, when φ = π/2, the nematic axis of the elastomer
is parallel to the surface. The topographies for r2 = d and 5d
are plotted in figures 9 and 10, respectively, where the results
of different radius ratios are compared as well. At s = 0.0, the
illuminated material contracts in the nematic direction and thus
protrudes out to form a saddle. The top of the saddle is rounded
in the case of r2 = d (figure 9(a)), while it caves in slightly in
the case of r2 = 5d (figure 10(a)). At s = 0.2, the unexposed
surface in the central region becomes lower than the surface of
the illuminated annular region. Consequently, for both r2 = d
and 5d , the resulting topographies look like saddles with an
opening mouth at the center (figures 9(b) and 10(b)). If the
ratio s increases to 0.5, the saddles and the opening mouths
enlarge as well, as seen from figures 9(c) and 10(c). This
implies that the photoinduced surface topography is dependent
not only the nematic orientation but also on the size and shape
of the illumination pattern.

4. Conclusions

By introducing the Green function technique, a route to predict
the photoinduced surface topography of nematic elastomers
containing photosensitive azobenzene molecules is proposed.
The approach is quite general as it applies to arbitrary
illumination patterns and arbitrary orientations of the nematic
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Figure 5. Photoinduced surface topographies under annular
illumination for r2 = d , φ = 0 and (a) s = 0.0, (b) s = 0.2 and
(c) s = 0.5, respectively. The scales in the three directions are
normalized by X1 = x1/d , X2 = x2/d and X3 = 4πu3/α Id .

axis. In any case the procedure is reduced to estimating certain
integrals defined on appropriate domains. To demonstrate the
application of the present method, two numerical examples are
given. The results are in excellent agreement with the previous

Figure 6. Photoinduced surface topographies under annular
illumination for r2 = 5d , φ = 0 and (a) s = 0.0, (b) s = 0.2 and
(c) s = 0.5, respectively. Figure (a) is shown upside-down to get a
clearer visualization. The scales in the three directions are
normalized by X1 = x1/d , X2 = x2/d and X3 = 4πu3/α Id .

analytical solution in some special cases, and reveal the large
complication of the dependence of the surface topography on
such factors as the size and shape of the illumination pattern
as well as the orientation of the nematic axis. Certainly,
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Figure 7. Photoinduced surface topographies under annular
illumination for r2 = d , φ = π/4 and (a) s = 0.0, (b) s = 0.2 and
(c) s = 0.5, respectively. The scales in the three directions are
normalized by X1 = x1/d , X2 = x2/d and X3 = 4πu3/α Id .

the approach developed in this paper is phenomenological in
nature, and some important effects such as the isomerization
dynamics of azobenzene molecules and the elastic anisotropy

Figure 8. Photoinduced surface topographies under annular
illumination for r2 = 5d , φ = π/4 and (a) s = 0.0, (b) s = 0.2 and
(c) s = 0.5, respectively. The darker regions mean the locations
where the density of data points are enhanced. The scales in the three
directions are normalized by X1 = x1/d , X2 = x2/d and
X3 = 4πu3/α Id .

and large deformation of the elastomers were not considered.
Incorporation of these aspects into the model is undoubtedly
of theoretical and practical importance, and will be the main
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Figure 9. Photoinduced surface topographies under annular
illumination for r2 = d , φ = π/2 and (a) s = 0.0, (b) s = 0.2 and
(c) s = 0.5, respectively. The scales in the three directions are
normalized by X1 = x1/d , X2 = x2/d and X3 = 4πu3/α Id .

content of a future study. In spite of these, we believe that
the present work may provide a useful tool to search for some
informative trace, at least in a qualitative sense, for creating a
desired surface topography in the optical way.

Figure 10. Photoinduced surface topographies under annular
illumination for r2 = 5d , φ = π/2 and (a) s = 0.0, (b) s = 0.2 and
(c) s = 0.5, respectively. The scales in the three directions are
normalized by X1 = x1/d , X2 = x2/d and X3 = 4πu3/α Id .
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